Exploratory Testing Dynamics

IQAA Quality Enrichment Conference
Michael Kelly — October 13, 2006

www.MichaelDKelly.com ‘

Acknowledgements

The Explorato

= The outline for this talk is based on the work of
James and Jon Bach and their work on Exploratory
Testing Dynamics.

I also pirated material from Jon Bach’s recent
presentations on Exploratory Testing.

Testing Research Summit also

helped shape this presentation. Participants
included:

James Bach

Jonathan Bach

Scott Barber

Michael Bolton
Elisabeth Hendrickson

www.MichaelDKelly.com

" Cem Kaner

" Michael Kelly

® Jonathan Kohl

" James Lyndsay
® Robert Sabourin

Exploratory Testing

= Exploratory testing is the opposite of
scripted testing.

ted fragmentary freestyle exploratory
. test cases
vague scripts charters roles l

1 (scenfrios) 1 l

D ——

= Both scripted and exploratory testing
_ are better thought of as test
L approaches, rather than techniques.

www.MichaelDKelly.com

What are the dynamics of ET?

= Exploratory testing is often considered
mysterious and unstructured. Not so! You
just need to know what to look for.

= The following are some of the many
dynamics that comprise exploratory
testing.

= These are the skills that comprise
professional exploration of technology.

www.MichaelDKelly.com

The Dynamics of ET

Part 1
Skills and Tactics of Exploratory Testing

www.MichaelDKelly.com

Skills and Tactics

= Principles:
= Related to exploratory testing

= Critical to exploration (if you take it
away, you have some sort of sick
exploration)

= Unique
= Observable, assessable, and improvable

www.MichaelDKelly.com

Skills and Tactics

These are the skills that comprise professional
exploration of technology that can be observed,
measured, and improved.

Modeling Questioning Generating/Elaborating Recording
Resourcing | Observing Overproduction/Abandonment | Reporting
Chartering Manipulating | Abandonment/Recovery

Collaboration | Refocusing

Alternating

Branching/Backtracking

Conjecturing

www.MichaelDKelly.com

Modeling

Composing, describing, and working with mental
models of the things you are exploring. Identifying
relevant dimensions, variables, and dynamics. A
good mental model may manifest itself as having
a “feel” for the product; intuitively grasping how it
works.

Examples: L

= Drawing a map for someone ./
to get to your house.

m Developing a UCML diagram
for a large performance test.

m Describing the political
structure of your organization
to a new hire.

www.MichaelDKelly.com

Modeling Y

X
What it looks like when you do it poorly:

= An inability to identify the relevant dimensions, variables, or
dynamics of the object you are modeling.

= Developing a model and then never actually using it (without
making the conscious decision to abandon It).

= Failing to recognize that all models are flawed and
incomplete.

How could you get better at it:

m Learn commonly used formal models: UML, UCML, systems
diagramming.

= Give yourself a series of test exercises where you physically
(pen and paper) model each problem three or more times

and develop test cases off of each model. Notice how the
different models inspire different types of tests.

m Partner with someone else. Take turns naming different
dimensions of an object.

www.MichaelDKelly.com

Resourcing

Obtaining tools and information to support your effort.
Exploring sources of such tools and information. Getting
people to help you.

Examples:

= Breaking out of functional
fixedness:
= Using a performance test tools to

run high-volume functional test
automation.

= Using a functional test tool for
performance testing when a
performance test tool is too
expensive or not practical.

= Influencing a developer or analyst ﬁ
to give you thirty minutes of their
time to answer your questions.

= Convincing management that you need two more testers to hit
the deadline, then being able to identify and hire them in time.

www.MichaelDKelly.com

Resourcing

What it looks like when you do it poorly:
= Inability to get people to help you.

= Spending too much time looking for or setting up resources
and not enough time testing.

= Inability to recognize when existing tools already solve the
problem.

How could you get better at it:
= Learn the principles of negotiation.

O Learr; a programming language (Ruby, Pearl, Java, Python,
etc...).

m Set up a weekly review meeting for your team where each
person gives a ten to fifteen minute presentation on a tool,
artifact, practice, or idea that they reviewed that week.

www.MichaelDKelly.com

Chartering

Tactical
Chartering
Strategic

Chartering

What it looks like when you do it poorly:

m The client doesn’t understand the work you are doing or why you
are doing it.

= You don't understand the work you are doing or why you are doing
it.

= You don‘t know when you are done with your testing. You don't

have a good enough understanding of the problem to know what
good enough testing is.

How could you get better at it:

= Work with a group of testers, each of you develop a test strategy
for a product on your own, then compare and contrast your
strategies.

m Charter your day to day activities in 45 minute blocks. Practice your
estimation techniques, and practices varying the language of your
charters to better capture the work you are actually doing at that
time.

m Practice selling your ideas. Use PMs, managers, and skeptics.

www.MichaelDKelly.com

Exercise: Greenland

Questioning

Identifying missing information, conceiving
of questions, and asking questions in a way
that elicits the information that you seek.
Knowing when to ask your questions for
optimal information usage.

Examples:
= Open book testing.

= Reviewing a requirements document or
participating in a requirements gathering session.

m Using technical jargon when asking questions of
developers, business jargon when asking
questions of your customer, and no jargon when
asking questions of your spouse.

www.MichaelDKelly.com

Questioning

What it looks like when you do it poorly:

You run out of questions quickly or fail to ask any all
together.

You ask too many questions or ask them too quickly,
overwhelming the other party and making your session less
effective then it could be.

You ask questions without regard to the value of the
information, failing to know which next piece of information
will be the most important to the testing project.

How could you get better at it:

Play the game 20 Questions and other free-form question
based games.

Review requirements documents and identify the
assumptions that are not explicit in the specifications.

Try open book testing.

www.MichaelDKelly.com

Observing

Gathering empirical data about the object of your study;
collecting different kinds of data, or data about different
aspects of the object; establishing procedures for rigorous
observations.

Examples:

= Logging information during your testing (application logs,
PerfMon/SysMon, code coverage, etc...).

m Using tools that allow you
to “see” things you can't
normally see (pixel comp-
arison tools, spell checkers, ‘
conformance validation
tools [WSDL, Section 508,
etc...], Headspace, etc...).

m Counter example:
inattentional blindness.

www.MichaelDKelly.com

Observing

What it looks like when you do it poorly:

Inattentional blindness: you don't notice what you are not looking for.

You don't leverage tools to look for specific types of errors that they
can find more easily then humans.

Tunnel vision: You always collect the same type of data, find the
same types of errors, and use the same types of lab procedures.

How could you get better at it:

Practice using different tools that capture information about the
appllication: runtime analysis tools, logs, validators, system monitoring
tools, etc...

Practice describing the dimensions and behaviors of the Workroom
Productions black box test machines: http://www.workroom-
productions.com/black_box_machines.html. Get to the point where
someone could program a duplicate from your description.

Pair with someone. As you are testing a product, describe your
observations out loud (stream of consciousness) to the other ﬁerson.
When g/ou grow silent, they should comment on the aspects that they
noticed that you didn't. Or they can point out other aspects that you
can look at that you haven't yet.

www.MichaelDKelly.com

Manipulating

Making and managing contact with the object of
your study; configuring and interacting with it;
= Developing and using

establishing procedures for better control of
lab procedures.

experimental conditions.
m Using tools to extend
your reach into the
application you're testing.

www.MichaelDKelly.com

Examples:
= OFAT vs. MFAT

Manipulating i (S

What it looks like when you do it poorly:

= You don't automate repetitive tasks that you find yourself
always doing for test setup.

= You always interact with the aPpIication in the same way.
You don't have a rich library of methods to pull from for
different methods of interaction.

= You introduce errors into your testing due to faulty lab
procedures.

How could you get better at it:

m Practice using tools that extend your "reach" into the
application: automation tools, imaging tools, virtual
environments, etc...

= Practice alternating between OFAT and MFAT while testing.
Use an egg timer to keep you switching.

m Practice using different methods of interaction during 5 to 15
minute test sessions: mouse only, keyboard only, API only,
hotkeys, accessibility, etc...

www.MichaelDKelly.com

Collaboration

Working and thinking with others on

the same problem; group problem-
solving.

Examples:
= Pair programming.

= Riffing with someone to
nelp test ideas and see
if they “stick.”

= Co-authoring.

www.MichaelDKelly.com

Collaboration

What it looks like when you do it poorly:

You are always working alone. There is not a second chair
next to your desk, or it's often empty.

You don't get regular feedback on your testing, management
style, or deliverables.

Your team meetings don't actually result in forward
rogress, they are "around the table" status meetings where
ittle value is exchanged.

How could you get better at it:

Pair testing / pair programming.
Set up regular interaction for feedback: peer reviews,
session debriefs, pairing, and group problem solving.

Deliver status one-on-one and use team meetings to discuss
issues that affect the team.

www.MichaelDKelly.com

Exercise: Greenland

Generating/Elaborating

Working quickly in @ manner good enough for the
circumstances. Revisiting the solution later to
extend, refine, refactor or correct it.

Examples:

= Developing an initial list of charters, and then
add and remove charters over time as the
project unfolds.

= Writing code, and then refactoring that code
over time as you actually start using it.

= Modeling.

www.MichaelDKelly.com

Generating/Elaborating %

-

9

What it looks like when you do it poorly:

Your ideas don't evolve over time. You are doing something
today the exact same way you were doing it a year ago.

You can't generate new ideas and alternatives. You rely on
recovery for ideas or you rely on someone/something else
for your ideas.

You continue to change something that's working past the
point of good enough. You change for the sake of change.
No new value is added with the change.

How could you get better at it:

Develop and practice with heuristics to trigger your thinking
when you need to generate ideas quickly.

Practice using bug taxonomies to refine your planning and
strategy products.

Develop a personal syllabus for self education, complete with
tasks and resources. Each week, revisit that syllabus and
refine it to match your new needs and goals.

www.MichaelDKelly.com

%

(4

4

Overproduction/Abandonment

Producing many different speculative ideas and
making speculative experiments, more than you
probably need, then abandoning what doesn’t
work.

Examples:

= Brainstorming, trial and error, “bracketing” in
photography, genetic algorithms, free market dynamics.

= Random tests: acknowledging that we may be
systematically doing bad testing and running random
tests to ensure that we didn't miss something with our
other tests.

= Monitoring and logging during a performance test:
collecting large amounts of data from servers, log files,
performance monitors, and performance tools in order to
aggregate the data later and only use a portion of it in
the final analysis or report.

www.MichaelDKelly.com

Overproduction/ o N

Abandonment - s

What it looks like when you do it poorly:

m Excessive or superfluous amounts of data or ideas.
= Not abandoning data or ideas.

= Analysis/Paralysis.

How could you get better at it:
= Following a thread for five more minutes.

= Identify the things you currently maintain that
don't add value, try not maintaining them.

= Develop heuristics for idea production (we'll look
at some later...).

www.MichaelDKelly.com

Abandonment/Recovery

Abandoning ideas and materials in such a way as
to facilitate their recovery, should they need to be

revisited. Maintaining a “boneyard” of old ideas.
Repurposing artifacts or ideas.

Examples:
= Junkyard wars.

= The MacGyver principle: saturate yourself with ideas
about what things are and how they might be used
so that when you're in a situation and you need to
solve a problem you can put together a solution

from parts that other people might not see as
available.

= Going back to a past release and re-using a pile of
test cases for a feature that you know little about.

www.MichaelDKelly.com

9

Abandonment/Recovery { % ©

-

Yy

%

What it looks like when you do it poorly:
= You fail to abandon in a way that facilitates recovery.

= You don't know how to "partial recover" something. It's all
or nothing.

= You recover too often. You rely on the past when what you
really need to do is recreate the wheel.

How could you get better at it:

= Build your "boneyard." Create a place for ideas (both
personal and professional). Make sure it's accessible and
ge_arch)able. (Moleskin, email, blog posts and articles, thumb
rives

m Scan past artifacts on a regular basis. If you don't keep your
mental index up to date, the boneyard is worthless.

= Find a template you use (a kind of institutionalized
recovery), and refactor it. Challenge each element and
brainstorm missing elements. Close it. Now reinvent the
template from scratch (no copy and paste).

www.MichaelDKelly.com

Alternating

“oltage
+170 /\

+115

RMS

Time

F3EEme 50.00 m=
2Cycles 3 Cycles

Examples of Alternating

Warming up vs. cruising vs. cooling down

Doing vs. describing

Doing vs. thinking

Careful vs. quick

Data gathering vs. data analysis

Working with the product vs. reading about the product
Working with the product vs. working with the developer
Product vs. project

Solo work vs. team effort

Your ideas vs. other peoples’ ideas

Lab conditions vs. field conditions

Current version vs. old versions

Feature vs. feature

Requirement vs. requirement

Test design vs. execution

Coverage vs. oracles

Testing vs. touring

Testing vs. resting

Individual tests vs. general lab procedures and infrastructure
Reaction vs. non-reaction

Strategic vs. tactical ,
www.MichaelDKelly.com

Valtage
A A N\

Alternating n \/L \vim \U

What it looks like when you do it poorly:

m You struggle with the intrinsic exploratory nature of
exploratory testing. All other skills and tactics suffer. Your
test execution is one dimensional.

How could you get better at it:

= Write the polarities into your charters, focusing on a specific
polarity for a complete test session. This does not exclude
other polarities, just focuses on one. Use an egg timer to
signal a time to change polarities.

= Vary the context of your testing. You can do this by pairing
with people you don‘t normally pair with (programmers,
Brcgect managers, tech writers, that performance tester no

ody talks to, etc...), by testing applications you don‘t

normally test (web apps, web services, desktop apps,
embedded systems, utility apps, plug-ins, graphics
applications, etc...), and by changing your context (startup,
regul)ated, IT, software, maintenance, new development,
etc...).

www.MichaelDKelly.com

Refocusing

Managing the scope and depth of your
attention. Looking at different things, looking
for different things, in different ways.

Examples:

= Look at one feature, then switch
your attention to another feature.

m Seeing a behavior that interests
you in a new way, making a note
of it, and then continuing in your
current thread of testing.

m Seeing a behavior that interests
you in a new way and dropping your current thread of
testing to follow up on that new behavior.

www.MichaelDKelly.com

Refocusing

What it looks like when you do it poorly:

= You don‘t know what you should be working on (chartering
makes it relevant and or?anized, refocusing has to do with
the very low level idea of thinking of this looking at that).

= Tunnel vision: only capable of looking at something in one
and only one way.

= Compulsive refocusing: where you can’t hold your attention
on any one thing — you can't complete a thought or idea.

How could you get better at it:

m Practice in situations that require you to switch focus (lots of
complexity, lots of things going on, lots of features).

m Practice classic areas in testing where refocusing is
necessary (like Blink testing...?.

m Speeding up (put yourself under time pressure) — let go of a
process and create a new process that can be done in the
new timeframe.

m Do exercises in stating what the thread is: thread integrity.

www.MichaelDKelly.com

Branching/Backtracking

Allowing yourself to be productively
distracted from one course of action
in order to explore an unanticipated
new idea. Identifying opportunities
and pursuing them without losing
track of the process.

www.MichaelDKelly.com

Branching/Backtracking
Illustrated

Idea Thread Idea Thread

Eranching

Original Idea w Finizshed Idea

Backtracking

Idea Thread Idea Thread

Branching/
Backtracking

What it looks like when you do it poorly:

Criginal Idea \ Finished Idea

At the end of your session, you /accidentally/ didn't fulfill your original
mission. You either got lost or distracted. You didn't backtrack.

During a debriefing session, you can't think of any new charters that
you might want to run based on the testing you just did. No ideas
occurred to you. You didn't get distracted at all. You didn't branch.

While you are testing, the same idea keeps distracting you, you

explore it a little, then you backtrack, only to get distracted by it
again later. This continues for the entire test session. You were

thrashing, over backtracking and over branching.

How could you get better at it:

Condense the mission of your testing down to a post-it note and
place that on the monitor, over a portion of the screen. It should
distract you enough to keep you looking at it. Focus on THAT mission.

Give yourself test sessions with no mission. Encourage distraction.
Swab the application in your intuition. I call these learning tours.

Pair with someone else. Talk to them about your thread. Let them
challenge it. Let them force you to branch or backtrack when for you
it doesn't seem natural to do so.

www.MichaelDKelly.com

Conjecturing

Considering possibilities and ‘
probabilities. Considering mult-
iple, incompatible explanations rﬂﬂ}écmﬁfﬁ
that account for the same facts. AnD

REFUTATIONS
Examples: -
m "Classic” conjecture and refutat-
ion. “This system is secure. Now
prove that it's not.”

m Prioritizing a risk list.

m Seeing a defect (a null pointer exception

appears on the server log) and identifying five
different ways it could have gotten there.

e

www.MichaelDKelly.com

Q

KARL R. POPPER

CONJECTURES

Conjecturing

What it looks like when you do it poorly:

= You can't imagine multiple possibilities for a behavior:
“When does 2+2 not equal 4?”

= You fall victim to assimilation bias: The tendency to resolve
discrepancies between your conjecture and new information
by assimilating the information to fit your conjecture.

= You fall victim to confirmation bias: The tendency to
selectively search for and gather evidence that is consistent
with your conjecture. You ignore refutation.

How could you get better at it:

m Practice verbalizing your conjectures, then try to refute
them. (Use classic games like twenty questions or card
games like "Art Show" or explore magic tricks.)

m Read about philosophy and economics. For example, Karl
Popper and Freakonomics.

= Whenever you find a bug, imagine three reasons for why it
might not be a btéjc%@and three different failures that could

have manifested,themsealxeas in.that way.

Exercise: Greenland

Recording

Preserving information about your
process, progress, and findings.
Taking notes.

J

Examples: ‘

= Using a capture tool %B
ike BB TestAssistant. (5

= Keeping notes in note-

pad while you're testing.

= Carrying a moleskin around with you.

www.MichaelDKelly.com

Recording

What it looks like when you do it poorly:
Someone reading your reports can't tell a compelling story of your testing.
Your work is not auditable to the degree required for the context of the project.

It's difficult for someone to scan your records quickly to find the information
then want.

How could you get better at it:

Practice using tools like Spector Pro, BB TestAssistant, and Snaglt for test
recording.

Immediately after your testing, take your notes and answer the following
questions using only your notes:

1.

=1 Gl 5 B9 RS

8.

Experiment taking your notes with different mediums (audio, video, I|:)
digital) with different formats (text only, pictures, mind maps, modes

What was I testing?

Why was I testing?

How did I test it?

What data did I use?

Where did I test it?

What did I find?

What did I not test?

What, if I had it, would allow me to do more or better testing?

aper,

spreadsheets, templates, etc...).

www.MichaelDKelly.com

Reporting

Making a credible, professional report
. of your work to your clients in oral
and written form.

Examples:

= Telling the story of your
progress so far.

= Writing a test summary
report.

= The hallway conversation status report.

www.MichaelDKelly.com

Reporting

What it looks like when you do it poorly:
= Your report is not relevant to your client.
= Your report doesn't go into enough detail, or goes into too

much detail.

= Your report is not actionable.

How could you get better at it:

Practice using MCOASTER (or MOST CARE) to frame your
report (or develop a better model for your context).

Partner with someone you work with (ideally several people)
and at random points throughout the day ask each other for
a quick one-minute or five-minute status report.

Write up a status report at the end of each day and send it
to your team members for review and feedback.

m Can they understand what you did and didn’t do?

= Do they know why you did it?

m Can they tell what techniques you used?

www.MichaelDKelly.com

Exercise: Greenland

Exercise: Bullets and
Numbering

These are the skills that comprise professional
exploration of technology that can be observed,
measured, and improved.

Modeling Questioning Generating/Elaborating Recording
Resourcing | Observing Overproduction/Abandonment | Reporting
Chartering Manipulating | Abandonment/Recovery

Collaboration | Refocusing

Alternating

Branching/Backtracking

Conjecturing

www.MichaelDKelly.com

Part 2

Evolving Work Products

www.MichaelDKelly.com

Evolving Work Products

Exploratory testing spirals upward toward a
complete and professional set of test artifacts.
Look for any of the following to be created or
refined during an exploratory test session.

Test Ideas: Tests, test cases, test procedures, or
fragments thereof.

Testability Ideas: How can the product be made
easier to test?

= Bugs: Anything about the product that threatens
its value.

= Risks: Any potential areas of bugginess or types
of bug.

www.MichaelDKelly.com

Evolving Work Products (cont)

= Issues: Any questions redqarding the test project,
or matters to be escalated.

Test Coverage Outline: Aspects of the product
we might want to test.

Test Data: Any data developed for use in tests.

Test Tools: Any tools acquired or developed to
aid testing.

= Test Strategy: The set of ideas that guide our
test design.

= Test Infrastructure and Lab Procedures:
General practices or systems that provide a basis
for excellent testing.

www.MichaelDKelly.com

Evolving Work Products (cont)

Test Estimation: Ideas about what we need and
how much time we need.

Test Process Assessment: Our own assessment
of the quality of our test process.

Testing Narrative: The story of our testing so
far.

m Tester: The tester evolves over the course of the
project.

= Test Team: The test team gets better, too.

= Developer Relations: As you test, you also get
to know the developer.

www.MichaelDKelly.com

What work products did we see in

the boundary testing example?

O Test Ideas

O Testability Ideas

O Bugs

4 Risks

 Issues

d Test Coverage Outline

O Test Data

O Test Tools

O Test Strategy

O Test Infrastructure and Lab Procedures
O Test Estimation

L Test Process Assessment
O Testing Narrative

O Tester

O Test Team

d Developer Relations

www.MichaelDKelly.com

Part 3

Testing Considerations

www.MichaelDKelly.com

Disclaimer

Oh yea...

I know, I just put this section in here for
completeness...

However, these are useful to help you test
robustly or evaluate someone else’s testing.

= These heuristics (and heuristics like them) are
central to your ability to perform the skills and
tactics guickly. How fast do ideas occur to you?

m This is a compressed version of the Satisfice
Heuristic Test Strategy model.

www.MichaelDKelly.com

Project Environment

Customers: Anyone who is a client of the test
project.

Information: Information about the product or
project that is needed for testing.

Developer Relations: How you get along with
the programmers.

Test Team: Anyone who will perform or support
testing.

Equipment & Tools: Hardware, software, or
documents required to administer testing.

Schedules: The sequence, duration, and
synchronization of project events.

Test Items: The product to be tested.

Deliverables: The observable products of the
test project.

www.MichaelDKelly.com

Product Elements

= Structure: Everything that comprises the
physical product.

= Functions: Everything that the product
does.

= Data: Everything that the product
processes.

= Platform: Everything on which the
product depends (and that is outside your
project).

= Operations: How the product will be
used.

= Time: Any relationship between the
product and time.

www.MichaelDKelly.com

Quality Criteria Categories

Capability: Can it perform the required functions?
Reliability: Will it work well and resist failure in all required situations?
Usability: How easy is it for a real user to use the product?

Security: How well is the product protected against unauthorized use or
intrusion?

gcala?bility: How well does the deployment of the product scale up or
own?:

Performance: How speedy and responsive is it?
Installability: How easily can it be installed onto it target platform?

Compatibilitg: How well does it work with external components &
configurations:

Supportability: How economical will it be to provide support to users of
the product?

Testability: How effectively can the product be tested?

Maintainability: How economical is it to build, fix or enhance the
product?

Portability: How economical will it be to port or reuse the technology
elsewhere?

Localizability: How economical will it be to publish the product in
another language?

www.MichaelDKelly.com

General Test Techniques

Function Testing: Test what it can do.
Domain Testing: Divide and conquer the data.
Stress Testing: Overwhelm the product.
Flow Testing: Do one thing after another.
Scenario Testing: Test to a compelling story.
Claims Testing: Verify every claim.

User Testing: Involve the users.

Risk Testing: Imagine a problem, then find it.

Automatic Testing: Write a program to
generate and run a zillion tests.

www.MichaelDKelly.com

Thank You

