WORKING TESTING TASKS
INTO THE PRODUCT
BACKLOG @michal. d_kelly

Testing Complexity on
Agile Projects

Where our testing commonly
takes place

How we like to think about testing in
our iterations

More complex Take more time

* Feature testing for non- * Compatibility testing
trivial functionality * Internationalization testing

Testing complex user- » Usability testing
interface interactions Alpha/Beta testing

Products with many
integrations to other
systems

Real-time systems
Performance testing
Security testing

Certification testing
Performance testing
Security testing
Configuration testing
Regression testing *

* Can often take longer than a single iteration on large projects.

. Security Testing

Functional testing for an
epic or set of stories

. Browser Compatibility Testing

. Usability Testing

Functional testing for
a single story

In addition to

complex testing,
there are
complexities and

issues that come
with an
emergent
architecture and
design

We lay some foundational code, getting
scaffolding in place, basic templates, and we get
tools like Cl and basic code coverage in place.

We start to lay in some core features. We're
focused on getting enough functionality that we can
release to production and start the “release to prod
at the end of every sprint” cycle.

We deploy our first usable code to
production, and we get users on it so we can get
feedback.

We're iterating on customer feedback
and stories for new features.

We find that some core piece of
functionality (our homepage, search, or some other
feature) is dog slow for some reason. It happened
over time, but it’s finally gotten to the point where
the team writes a story to crush the problem.

We're rolling smooth again in
production, on to more stories.

Managing the
Complexity

Test Automation

Unit, Component, and Integration Tests

1000s Customer Acceptance Tests

GUI-Level Automation

10s Monitoring Scripts

Better Tooling

Increased specialization by individual products
(instead of “enterprise” solutions)

Better test case/coverage management

Better visibility into the product (analytics,
monitoring, alerting, etc)

Better environment management capability

Outsourcing

e Partner with test labs or consultants that
specialize in:
— Performance
— Usability
— Security
— Compatibility (mobile or browser)
— Etc.

Transition lterations

Iterations focused on

* “hardening” activities such as bug-fix and
testing

e deployment activities like environment setup
and documentation

 communication activities like messaging and
training

Layering Your
Testing

EpiC

Story || Story

Some tools leverage the concept of “chores” to capture non-user facing work.

Testing by the Story

e Testing is a task (or set of tasks) on each story
— developer tests
— customer acceptance tests
— possibly additional functional tests/charters
— possibly service-level or user interface automation

* More complex testing tasks can be separate
stories
— testing in a specific environment with seeded data
— testing for specific configurations or data sets

Testing by the Epic

e Write stories to test the interaction of features delivered under the epic:
traversing use-cases or sequence diagrams (automated or manual)
large or complex data sets
system events and/or calendar events (daily, weekly, monthly, quarterly, etc)
take into account operations (analytics, monitoring, alerting)
complex 3" party integrations and/or dependencies

take into account maintenance/setup activities (archiving/deleting,
deployment/rollback, etc)

» Write stories to test specialized types of testing that only make sense to
perform at the Epic level
usability
performance
security
failover/recovery
(] (o8

Testing by the Theme

* For themes targeting “improvement over time” -
areas like performance and usability - you might
have a number of stories/tests that build on one
another that you execute over time:

— establish a baseline of data via a small focused test bed
— perform specific tuning activities
— rerun baseline test and compare

— slightly increase the core test-bed adding new tests and
baseline data

— repeat, over time growing the test suite and available data
under that theme

Roadmaps and
Backlogs

Sprint Planning using Pivotal Tracker A p'ace to start:
‘Done | What I dic | * Develop concept-level

Curent Whatam doing designs

vill de Leverage designs to

[’
'_‘."....

lcebox | WhatImight do build epic-level Icebox

Pull epics into Backlog,
breaking each epic into

e 13 22 W -Cumemt

g ot = . stories

o s con w2)

- . : '
B e e | | Stories can either be:

5‘:.'!’:.:......_‘.. - — Specific to a discipline*

 hosocuse Swsemerssooc [0 — Span multiple

(admin) (JR) ANyt .
Nasocuse Semers o S disciplines* using tasks
(authentcated)

o Leverage placeholder

e “~ stories liberally

checks are benyg seoded rio Bilngs Data

. iovestments S an admin, fdike St
the abiity 10 rack Pvestment checks n

OTPay ™ * Common disciplines include design, develop-
Witings, epece 8p0C PO Creation | Sumt \ ment, testing, and infrastructure

s beng seeded into Bilngs Data

Leverage the Backlog to develop a
visual roadmap of the project with key
dates/milestones shown

To the best of your ability, plan for
periodic releases to production with
incremental value

Before the start of each sprint

e Re-estimate “on tap” stories
— breakout into smaller stories as needed

— talk about and manage dependencies for design,
development, infrastructure, and testing

— identify new stories as needed based on our
updated understanding of scope and risk

— remove any placeholder stories if they still exist

e Review and update sprint priorities with
product owner(s)

On a regular basis
(monthly or quarterly-ish)

Review the overall product Backlog for gaps based on current
understanding

— ldentify new stories as needed
— Remove stories no longer needed
— Target placeholders to see if you can replace them with real stories

Review Icebox to see if there are stories/epics that need to be

moved into scope

— Review newly created stories/chores/bugs to see if any of them need
to be prioritized in the Backlog

— Revisit themes to see if all the correct epics are still represented
somewhere in the Icebox and/or Backlog

— Perform initial story breakout for epics if moving them into the
Backlog

Reforecast the overall project roadmap and provide updated
snapshot to the team and product owners (visual and/or Gantt)

Someone on the team is...

 Managing testing risk and coverage
— Understands what’s been automated as part of regular regression

— Curates defects, exceptions, user feedback, and other qualitative data
to build a working model of product quality

— Writes new testing stories as needed
* Coordinating who does what with regards to testing

— Quarterbacks larger testing efforts for areas that span a single story
(performance, security, usability, etc)
— Manages any outsourced relationships when it comes to testing

* Advocating for testability
— |dentifies new tools, APIs, and features to facilitate easier testing

— Facilitating and training others on how to better test
— Researching and removing testing roadblocks as needed

o1 T le CR U EREVA (o1
Think About Releases

Development -
Testing -
Documentation -
Training -

Sprint 1 Sprint 2 Sprint 3 Sprint 4

Communication -
Release Preparation -

Development -
Testing - Sprint 1 Sprint 2
Documentation -

Release 1

Development -
Testing - Sprint 1 Sprint 2
Documentation -

Beta 1

Communication -
Release Preparation -

Development -

Sprint 3

Release 2

Sprint 3

Beta 2

Release 1

Testing - Sprint 1 Sprint 2 Sprint 3 Sprint 4

Documentation -

Release 1

Sprint 4

Release 3

Sprint 4

Beta 3

Sprint 5 Sprint 6

Release 2

- Testing

- Documentation

- Training

- Communication

- Release Preparation

- Testing

- Documentation
- Training

Release 4

- Testing

- Documentation

- Training

- Communication

- Release Preparation

Continuous
Integration

- unit testing

- code coverage

Every Commit

Sprint Testing

- Customer Acceptance Testing
- Exploratory Testing

- Integration Testing

- Performance Testing

Every Two Weeks

Major Release Testing
- Functional Testing
- Regression Testing

Hotfix Release Testing Performance Testing

- Two Minute Drill Security Testing
- Failover/Recovery Testing

XXX

- Usability Testing

X.0

XX

Minor Release Testing
- Functional Testing

- Regression Testing

- Performance Testing

Release-Driven Testing

e Can create “space” for testing in tight
iterations, while preserving the power of
“small batches”

e Can remove some testing from the backlog
entirely by creating regular “release-based”
testing activities

e Can facilitate release criteria related to test
coverage targets/goals

The Stories

Testing Stories

Should have clear objectives for what value they are
attempting to deliver

Don’t have to be framed as value to some specific
user

Can sometimes be time-boxed

Should have clear deliverables that can be accepted
or rejected

Should be estimated by the entire team, just like any
other story

May have (and often will have) dependencies on
other stories

Types of Testing Stories/Chores

Planning Investigation

Continuous

Execution .
Execution

Planning

Objective: Develop a plan or strategy for some aspect of
testing relating to the project
Deliverables: Common deliverables might include:
— a document or wiki page for review
— a collection of estimated stories/chores that support the plan
— a possible timeline to support the plan

Examples: The following might be some example planning
stories/chores:

— Develop a performance testing plan for MVP launch
— Develop a usability test plan for student dashboards

— Develop a plan for how we will coordinate test environments
and data with clients X, Y, and Z

Investigation

Objective: Time-boxed investigation/research of some
aspect of testing relating to the project

Deliverables: Common deliverables might include:
— a brief summary of investigation/research performed
— a summary of findings
— a recommendation

Examples: The following might be some example
investigation stories/chores:

— Research compatibility testing vendors capabilities and pricing
and make a recommendation

— Research Android user market and provide a recommendation
on initial test target coverage requirements

— Figure out how to mock test data for service XYZ

Task

Objective: A discreet task (or collection of tasks) to accomplish
related to testing

Deliverables: Common deliverables might include:
— the setup or configuration of a tool, environment, or data
— the automation of a test or set of tests

— the development of some key artifact to support a broader test effort
(usage model, exit interview, coverage matrix, etc)

Examples: The following might be some example task stories/
chores:

— Automate regression tests for XYZ
— Develop initial usage model for customer signup
— Develop demographic specific questionnaires for usability testing

— Develop coverage matrix for customer billing entries by product type,
geographic region, and payment terms

Execution

Objective: Execution of a discreet set of test activities. | think of this as
executing a charter in Session Based Test Management.
Deliverables: Common deliverables might include:

— defects

— a summary of test results

— a summary of testing performed

— follow up test stories or product enhancement requests
Examples: The following might be some example execution stories/
chores:

Test for deliverability related issues related to product emails

Test for data accuracy issues related to calculations on service and fundraising
summary stats

Test for data accuracy issues related to Piggy Bank commitment calculations
Test for performance related issues related to mapping capabilities

Perform a copy review of the various descriptive dialogs in the app looking for
typos and grammar issues

Continuous Execution

Objective: Execution of a set of test activities that support a larger testing effort
that spans multiple iterations. This is commonly done for things like performance
or usability testing. You can think of this as testing work that’s “never done.”
Deliverables: Common deliverables might include:

defects

a summary of test results

a summary of testing performed

updated planning or test documentation

updated baseline information

follow up test stories or product enhancement requests

Examples: The following might be some example execution stories/chores:
— Regression test the performance of XYZ, updated for new ABC functionality
— Review beta test feedback and product analytics for ABC and conduct follow up
interviews as necessary
— Bulk test policies X,000 through Y,000 (load policies into the test environment for

processing, review resulting exceptions and errors, aggregate issues into the smallest
set possible and log them for remediation)

Questions?

www.MichaelDKelly.com
@michael_d_kelly

